Tag: climate change

  • Astroelectricity: America’s national energy security imperative

    Astroelectricity: America’s national energy security imperative

    by Mike Snead

    Here’s a summary of “Astroelectricity: America’s national energy security imperative” by Mike Snead (The Space Review, September 22, 2025). You can read the full article here. Learn more about Mike at The Spacefaring InstituteTM here.

    Conclusions

    Snead argues that space solar power–supplied astroelectricity is the only sustainable energy solution that is both large enough and practicable enough to enable America to replace its fossil carbon energy sources before depletion and avoid returning to energy insecurity. The scale of the energy transition is enormous, and only with strong government leadership, research, and early deployment of SSP can the U.S. ensure an orderly transition. To maintain national energy security, and protect future generations, Snead believes the development and deployment of astroelectricity must now be viewed as a strategic imperative.

    Main Points

    • The U.S. currently depends heavily on fossil fuels: oil, natural gas, and coal supply about 70–80 Quads of the ~100 Quads of primary energy consumption as of 2019.
    • Technically recoverable oil and gas in the U.S. may last ~75 years at 2019 consumption levels, but with exports and growing use, the lifetime could be much shorter.
    • To transition (“go clean”) to sustainable energy, two criteria are key: (1) sufficient scale, and (2) a practicable, orderly implementation. Political or symbolic solutions will not suffice.
    • Of all sustainable energy sources, only a few are scalable to entirely replace fossil carbon fuels: intermittent wind, intermittent ground solar, baseload nuclear fission, and baseload space solar power (SSP), i.e. “astroelectricity.”
    • Assessment of wind power: Even if large areas are used, in average years wind might supply ~68 % of the needed intermittent power; in low wind years that drops sharply; public/land-use acceptance is a major constraint.
    • Ground solar farms: To meet the intermittent power need would require ~14 % of the U.S. contiguous land area—much of which overlaps with prime agriculture or unsuited terrain.
    • Nuclear fission: To supply all baseload power would require many times current nuclear capacity; breeder reactors bring proliferation risks; decommissioning, waste, natural disasters, and terrorism risks also loom large.
    • Astroelectricity (SSP): Collect sunlight in geostationary orbit, convert to electricity, beam to earth via radio/microwave, received by large rectenna farms. Supplies baseload power. Requires only a small fraction of U.S. land compared to terrestrial-only options.
      • For example: to supply ~80 % of baseload power via astroelectricity, about 4,339 GW continuous (GWc) would be needed from SSP, requiring ~182,000 km² land for rectenna/plant sites—< 3 % of the contiguous U.S. land area.

    Glossary of Terms Used

    • BTU (British Thermal Unit)
      A unit of thermal energy defined as the amount of heat needed to raise one pound of water by one degree Fahrenheit. 1 BTU ≈ 1,055 joules. Used to measure the energy content of fuels like coal, oil, and natural gas.
    • BOE (Barrel of Oil Equivalent)
      A unit that expresses energy content in terms of a barrel of crude oil. One BOE = 5.8 million BTU of thermal energy. Useful for comparing different fuels on a common basis.
    • Quad (Quadrillion BTUs)
      A large-scale unit of energy equal to 1 quadrillion (10^15) BTUs. Commonly used to describe national energy consumption. For example, in 2019, the U.S. used about 100 Quads of primary energy.
    • GW (Gigawatt)
      A measure of power equal to 1 billion watts (10^9 W). Often used to describe the size of power plants or electricity generation capacity.
    • GWc (Gigawatts Continuous)
      A refinement of GW, meaning gigawatts of continuous power output, i.e., power delivered around the clock without interruption. Used to describe baseload capacity requirements for astroelectricity.
    • Technically Recoverable Resources
      The portion of identified oil, gas, or coal reserves that can be produced with existing technology and practices, regardless of market price.
    • Primary Energy
      Energy found in natural resources (like coal, oil, natural gas, wind, sunlight) before being converted into electricity, fuels, or heat for use by consumers.
    • Baseload Power
      The minimum level of continuous power demand that must be met by an energy system. Technologies that can deliver baseload (like nuclear or space solar power) are especially valuable for energy security.
    • Rectenna
      A large ground-based receiving antenna that converts microwave or radio wave transmissions from space solar power satellites back into usable electricity.

  • STP180 – Can Space Based Solar Power Save the Planet

    STP180 – Can Space Based Solar Power Save the Planet

    This recent Space and Things podcast featuring John Mankins is an excellent all-around introduction to space based solar power (SBSP) and its game changing, clean energy potential.

    For those who may not be familiar, John C. Mankins is a former NASA physicist known for his ongoing work on space-based solar power. Along with explaining the fundamental of SBSP in easy-to-understand language, Mankins made a point I would like to highlight.

    • Unlike nuclear power plants, SBSP will be a switchable baseload power source. SBSP will be able to take the place of natural gas and other fossil fuel fired generation now being used to supplement terrestrial solar and wind power when nighttime or weather interrupt their outputs. The combination of space-based and terrestrial solar power will be a 100% clean, baseload power source.

    Mankins also had some astute observations about the most recent NASA report on SBSP, published on January 11, 2024 from the Office of Technology, Policy, and Strategy.

    • Energy for Earth is not one of NASA’s four current missions
    • The report has a very reasonable charter at the beginning.
    • The analyses contained in the report utilize excellent, rigorous methodologies.
    • The report has some extraordinarily reasonable findings and recommendations at the end.
    • But … the assumptions that went into that model were weird. The assumptions were unreasonably pessimistic, leading to astronomically high predictions of the cost per kWh from SBSP.
    • There is a one-line caveat included in the report that says if all of our assumptions turn out better than we have assumed, the cost of a kWh from SBSP will be about three cents.

    Needless to say, you should read the report for yourself (linked above) and come to your own conclusions about its assumptions, charter, analyses, findings, and recommendations. Keep in mind the fact that energy for Earth is not one of NASA’s four current missions.

  • Gemini Deep Research: Current State of Space-Based Solar Power

    Gemini Deep Research: Current State of Space-Based Solar Power

    I entered the following query into the Gemini Deep Research AI:

    What is the current state of space-based solar power development and what entities are currently conducting research on space-based solar power development? Compile a list of the top ten entities which are likely to accomplish the development and deployment of space-based solar power on a commercial scale?

    Gemini rewrote my query as:

    Provide an overview of the current progress in space-based solar power (SBSP) development, identify organizations currently researching SBSP, and list the top ten entities most likely to achieve commercial-scale SBSP deployment.

    Following is the report that Gemini Deep Research developed in about ten minutes after researching and analyzing data from hundreds of websites. I’ve included the Executive Summary and Conclusion and Future Outlook for SBSP in full, with headings for the remaining sections of the report.

    View or download a PDF of the full 20-page report.


    Space-Based Solar Power: Progress, Key Players, and the Path to Commercialization

    I. Executive Summary

    Space-based solar power (SBSP), the concept of harvesting solar energy in space and wirelessly transmitting it to Earth, is experiencing a significant resurgence of interest driven by advancements in space technology and the pressing need for clean, reliable energy. Recent milestones, such as Caltech’s successful wireless power transmission from space and Space Solar’s demonstration of 360° power beaming, highlight the tangible progress being made. A diverse range of organizations, spanning government agencies like NASA, ESA, JAXA, and AFRL, academic institutions such as Caltech and Kyoto University, and private companies ranging from established aerospace giants like Northrop Grumman and Airbus to innovative startups like Space Solar and Aetherflux, are actively engaged in research and development efforts. While significant challenges remain, particularly in terms of cost-effectiveness and large-scale deployment, the potential of SBSP to provide continuous, baseload power is attracting increasing attention and investment. This report provides an overview of the current state of SBSP development, identifies the key organizations involved, and analyzes the top ten entities most likely to achieve commercial-scale deployment in this transformative field.

    II. Introduction: The Promise of Space-Based Solar Power

    III. Current Landscape of SBSP Development

    IV. Leading Organizations in SBSP Research and Development

    V. Key Private Sector Players in the SBSP Arena

    VI. Technological Advancements and Key Challenges in SBSP

    VII. Evaluating the Potential for Commercial-Scale Deployment

    VIII. Top Ten Entities Most Likely to Achieve Commercial-Scale SBSP Deployment

    IX. Conclusion and Future Outlook for SBSP

    Space-based solar power stands at an exciting juncture. The convergence of technological advancements, particularly in space launch and wireless power transmission, coupled with the ever-increasing global demand for clean energy, has propelled SBSP from a futuristic concept towards a tangible possibility. Recent demonstrations and the growing number of active players across government, academia, and the private sector underscore the significant momentum in this field.

    While considerable challenges remain, particularly in achieving cost-effectiveness and deploying large-scale systems in space, the long-term potential of SBSP to provide continuous, baseload power is undeniable. The projected growth of the SBSP market indicates increasing investment and a shift towards more development-focused initiatives. The next decade will likely see significant progress in technology maturation and further in-space demonstrations, paving the way for pilot projects and, eventually, commercial-scale deployments.

    The entities identified in this report, with their diverse strengths and approaches, are at the forefront of this endeavor. Their continued progress, coupled with sustained government support and further technological breakthroughs, will be crucial in realizing the promise of space-based solar power and its potential to revolutionize the global energy landscape. As the world continues to strive for a sustainable energy future, SBSP is poised to play an increasingly important role, offering a clean, reliable, and virtually limitless source of power from the ultimate energy provider – the Sun.


    View or download a PDF of the full 20-page report.